With low success rates in clinical trials, drug discovery remains a slow and costly business. Currently, more than half of all drugs fail in Phase II and Phase III clinical trials due to a lack of efficacy and about another third of drugs fail due to safety issues including an insufficient therapeutic index. The importance of the extracellular matrix (ECM) in cell behavior, it is now well-accepted that culturing cells in three-dimensional (3D) systems that mimic key factors of tissue is much more representative of the in vivo environment than simple two-dimensional (2D) monolayers.

“Currently, the majority of cell-based HTS is being carried out on cultured cells propagated in two-dimensions (2D) on plastic surfaces optimized for tissue culture. At the same time, compelling evidence suggests that cells cultured in these non-physiological conditions are not representative of cells residing in the complex microenvironment of a tissue. This discrepancy is thought to be a significant contributor to the high failure rate in drug discovery, where only a low percentage of drugs investigated ever make it through the gamut of testing and approval to the market. Thus, three-dimensional (3D) cell culture technologies that more closely resemble in vivo cell environments are now being pursued with intensity as they are expected to accommodate better precision in drug discovery.”

In this review, Sigrid A Langhans provides an overview on the most common 3D cell culture techniques, address the opportunities they provide for both drug repurposing and the discovery of new drugs, and discuss the challenges in moving those techniques into mainstream drug discovery.

Source : https://doi.org/10.3389/fphar.2018.00006

According to a report issued by the Tufts Center for the Study of Drug Development, the costs associated with bringing a novel drug to market exceed $2.5 billion per successful compound. Drug developers search for other innovation systems which are more relevant with physiological and clinical predictability. They deplore the Gap between Conventional 2D Cell Cultures and In Vivo Animal Models. New technologies, as 3D culture including micro-environnement as proposed by Celenys company, our partner for 3D culture, or to go further as bioprinting or as organ-on-a-chip with microfluidic system are really nice technologies to fill the gap between both systems or to replace 2D culture experiments.

“Historically, drug discovery research has relied on two-dimensional in vitro assays (that is, cell monolayers cultured on plastic substrata) and in vivo animal models. Although these systems still predominate, drug developers are beginning to doubt whether the familiar assays and animal models are adequate with respect to physiological relevance and clinical predictability. And drug developers are losing patience with persistently dismal rates of translation.”

Source: 3D Cell Culture Draws Drug Developers’ Interest | GEN Magazine Articles | GEN

%d bloggers like this: