Feedback of Rania’s internship about the development of primary human hepatocyte model in biochip microfludic system

This is the end of Rania‘s 6-month internship in HCS Pharma about a new liver biochip system. After a first publication “Development of Liver-on-Chip Integrating a Hydroscaffold Mimicking the Liver’s Extracellular Matrix” in collaboration with the University of Technology of Compiègne (UTC) using the BIOMIMESYS® Liver hydroscaffold™ and HepG2/C3A (hepatocellular Read more…

Rania joins us to work on a Liver Biochip system

After a first publication “Development of Liver-on-Chip Integrating a Hydroscaffold Mimicking the Liver’s Extracellular Matrix” in collaboration with the University of Technology of Compiègne (UTC) using the BIOMIMESYS® Liver hydroscaffold™ and HepG2/C3A (hepatocellular carcinoma cell line) in Biochip, the project continue with Rania Chibani, who has joined us for a Read more…

We are happy to give a presentation at ESTIV congress in Barcelona (21-25 November 2022)

Our Project Leader in in vitro pharmacology Méryl Roudaut will present his presentation entitled “A single procedure to generate functional hiPSCs-derived liver organoids – Towards an innovative tools suitable for drug screening” during the session: Early Stage Researcher Session I (Tuesday, November 22nd, 2022). Abstract #165: We previously showed that Read more…

Human liver organoids and disease models, it’s time to use a more realistic ECM

The current hiPSC-derived models are adapted to reproduce diseases of genetic origin in two dimensions and have allowed in recent years to model diseases by using hepatocyte-like-cells (HCL) such as: Alpha1-antitrypsin (A1AT) deficiency (Tafaleng et al., 2015) Familial transthyretin-related amyloidosis (ATTR) (Isono et al., 2014) Glycogen storage deficiency (Satoh et Read more…

A single procedure to generate functional hiPSCs-derived liver organoids -Towards an innovative tool suitable for drug screening

The current hiPSC-derived models are adapted to reproduce diseases of genetic origin. However, the current two-dimensional HLC (hepatocyte like-cells) model has an immature liver phenotype that is more is closer to a perinatal liver. Furthermore, it does not take into account the complexity of the tissues and the extracellular environment Read more…

Poster – A single procedure to generate functional hiPSCs-derived liver organoids -Towards an innovative tool suitable for drug screening

We previously showed that human pluripotent stem cells (hiPSCs) provide a suitable model to study metabolic diseases upon hepatocyte-like cell (HLC) differentiation. In particular, HLCs have been used to model cholesterol metabolism regulation, by mimicking the main disease features in vitro. Human iPSCs can be generated from urine samples of Read more…

Importance of the liver extracellular matrix in the development of NASH/ASH

The extracellular matrix (ECM) is a non-cellular component of tissues and organs. It is mainly composed of structural elements (proteoglycans collagens, elastin) and cell adhesion proteins such as fibronectin and laminins. The ECM forms a complex structure with physical properties (elasticity, tensile and compression strength), which provides physical support for Read more…

We will present our work about the generation of functional human liver organoids with BIOMIMESYS® in CNRS thematic school

This week we will present at the thematic school “From 3D culture to the organoid: multidisciplinary research” organised by the Institute of Biological Sciences of CNRS (France) in Strasbourg. Study director Méryl Roudaut will talk about the generation of functional human liver organoids using hiPSC and our innovative 3D cell Read more…