Biomimesys meets Stem cells: presentations at FSSCR event and “From 3D Culture to Organoid” symposium

Biomimesys is providing a great opportunity to culture human induced pluripotent stem cells (hiPSCs) in 3D and differentiate them into different kind of cell types including liver cells. Showcased by Méryl Roudaut at the 20th International Congress on In Vitro Toxicology (ESTIV2018), our co-development with the institute du thorax (U1087) Read more…

Poster – Development and automation of 3D innovative hiPSC-based liver organoids including the microenvironment for phenotypic screening – Application on metabolic diseases – version DHU2020

Ask for high quality link by putting your email below We previously showed that human pluripotent stem cells (hiPSCs) provide a suitable model to study metabolic diseases upon hepatocyte-like cell (HLC) differentiation. In particular, HLCs have been used to model cholesterol metabolism regulation, by mimicking the main disease features in Read more…

Poster – Development and automation of 3D innovative hiPSC-based liver organoids including the microenvironment for phenotypic screening – Application on metabolic diseases

We previously showed that human pluripotent stem cells (hiPSCs) provide a suitable model to study metabolic diseases upon hepatocyte-like cell (HLC) differentiation. In particular, HLCs have been used to model cholesterol metabolism regulation, by mimicking the main disease features in vitro. Human iPSCs can be generated from urine samples of Read more…

Poster – Development of a new liver-on-chip including BIOMIMESYS® technology for mimicking the liver extracellular matrix: first results and perspectives

Objective: to develop a new liver-on-chip model that includes a relevant 3D matrix for hepatic cell growth and function with the use of of BIOMIMESYS® Liver hydroscaffold for a physiological 3D hepatocyte culture. Ask for high quality link by putting your email below View and download on Slideshare (low quality) Read more…

BIOMIMESYS® Oncology is a relevant hydroscaffold for cancer-related in vitro studies

BIOMIMESYS® Oncology is mostly composed of hyaluronic acid (HA), biofunctionnalized with undenaturated collagen I. HA, by interacting with its binding proteins (CD44, RHAMM, ICAM-1), is an active participant in inflammatory, angiogenic, fibrotic and cancer-promoting processes (Figure 1). We are currently looking at the effect of different elastic moduli of BIOMIMESYS® Read more…

Poster – A groundbreaking 3D cell culture technology for HCS: BIOMIMESYS hydroscaffold

Most potential drug candidates (90%) fail within the clinical trials, mainly because of lack of efficacy.  What if the pharmaceutical industry uses predictive human in vitro models in early drug discovery ? Ask for a high quality version of this poster : View and download on Slideshare (low quality) https://fr.slideshare.net/hcspharma/a-groundbreaking-3d-cell-culture-technology-for-hcs-biomimesys-hydroscaffold

Direct Effect of Bevacizumab on Glioblastoma Cell Lines In Vitro

Abstract  Bevacizumab is a humanized monoclonal antibody directed against the pro-angiogenic factor vascular and endothelial growth factor-A (VEGF-A) used in the treatment of glioblastomas. Although most patients respond initially to this treatment, studies have shown that glioblastomas eventually recur. Several non-mutually exclusive theories based on the anti-angiogenic effect of bevacizumab Read more…

Three Dimensional Tumor Engineering by Co-Culture of Breast Tumor and Endothelial Cells Using a Hyaluronic Acid Hydrogel Model

Abstract Besides tumor cells, the microenvironment harbors a variety of host-derived cells. To date, the most successful tissue engineering approaches have employed methods that recapitulate the composition, architecture and/or chemical presentation of the native microenvironment. Thus tumor engineering in biomimetic three dimensional conditions represents a dynamic cooperatively between different cell Read more…