Three Dimensional Tumor Engineering by Co-Culture of Breast Tumor and Endothelial Cells Using a Hyaluronic Acid Hydrogel Model

Abstract Besides tumor cells, the microenvironment harbors a variety of host-derived cells. To date, the most successful tissue engineering approaches have employed methods that recapitulate the composition, architecture and/or chemical presentation of the native microenvironment. Thus tumor engineering in biomimetic three dimensional conditions represents a dynamic cooperatively between different cell Read more…

Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry

Abstract Haematopoietic stem cells (HSCs) and haematopoietic progenitor cells (HPCs) grow in a specified niche in close association with the microenvironment, the so‐called ‘haematopoietic niche’. Scaffolds have been introduced to overcome the liquid culture limitations, mimicking the presence of the extracellular matrix (ECM). In the present study the hyaluronic acid Read more…

Hyaluronan hydrogel: An appropriate three-dimensional model for evaluation of anticancer drug sensitivity

Abstract The extracellular polysaccharide hyaluronan (HA) controls cell migration, differentiation and proliferation, and contributes to the invasiveness of human cancers. In order to investigate the sensitivity of cancer cells to antimitotic agents, we developed a cross-linked HA hydrogel, a three-dimensional matrix in which cells can invade and grow. We have Read more…

A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes

Abstract The lack of relevant in vitro models for adipose tissue makes necessary the development of a more physiological environment providing spatial and chemical cues for the effective maturation of adipocytes. We developed a biofunctionalized hydrogel with components of adipose extracellular matrix: collagen I, collagen VI, and the cell binding Read more…

Evaluation by quantitative image analysis of anticancer drug activity on multicellular spheroids grown in 3D matrices

Abstract Pharmacological evaluation of anticancer drugs using 3D in vitro models provides invaluable information for predicting in vivo activity. Artificial matrices are currently available that scale up and increase the power of such 3D models. The aim of the present study was to propose an efficient and robust imaging and Read more…