On the importance of extracellular matrix of the skin for efficient 3D cell culture models

The extracellular components of the skin can be divided into fiber-forming structural molecules, nonfiber-forming structural molecules, and “matricellular proteins”. Optimal quantities of different matrix components and their delicate interactions are necessary to maintain normal physiologic properties of the skin. Fiber-forming molecules provide a structure to the ECM by creating a Read more…

The key role of appropriate microenvironnement in your 3D cellular assays

Context It is well established that the extracellular matrix (ECM) plays a central role in cell homeostasis and cell adhesion by providing support, promoting cell-to-cell communication and differentiation (or dedifferentiation and tumoral progression when the ECM is modified). The composition but also the stiffness and elasticity of the ECM have important Read more…

Artificial intelligence to improve 3D cell culture : a milestone for HCS pharma

As you may now, in HCS Pharma we strongly believe that the critical point of the human health evolution in next years is the in vitro 3D cell culture, especially for complex diseases like cancer [1]. It’s why we work hard on our exclusive BIOMIMESYS® technology. As experts in HCS and cell imaging, we must master all the process : 3D biological models, 3D cell culture, volumetric pictures acquisition, 3D reconstruction and segmentation of cells and ECM compounds, 3D parameters extraction and, of course, biological interpretations. As explained in our VisuAI R&D project, the 3D reconstruction and segmentation step is not simple.

Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D

Abstract The extracellular polysaccharide hyaluronan (HA) controls cell migration, differentiation and proliferation, and contributes to the invasiveness of human cancers. The roles of HA cell surface receptors and hyaluronidases (HAses) in this process are still controversial. In order to investigate their involvement in cancer pathogenesis, we developed a reticulated HA Read more…

Cell-derived extracellular vesicles can be used as a biomarker reservoir for glioblastoma tumor subtyping

A publication from R. Lane et al, described the use of Small extracellular vesicles (sEVs) reservoir as a biomarker for Glioblastoma tumor subtyping. In this publication Astrocytes, Glioblastoma cell lines, and Glioblastoma patient-derived stem cells were grown in BIOMIMESYS® hydroscaffold. Abstract Glioblastoma (GBM) is one of the most aggressive solid tumors for which treatment options Read more…

A chemotaxis-based explanation of spheroid formation in 3D cultures of breast cancer cells

New results of growing of breast cancer (MCF7 and MCF7-sh-wisp2) cells in BIOMIMESYS® Adipose tissue as a relevant 3D in vitro model, using Keller–Segel PDE system to model chemotactical auto-organization of cells. Abstract Three-dimensional cultures of cells are gaining popularity as an in vitro improvement over 2D Petri dishes. In many such experiments, Read more…