Artificial intelligence to improve 3D cell culture : a milestone for HCS pharma

As you may now, in HCS Pharma we strongly believe that the critical point of the human health evolution in next years is the in vitro 3D cell culture, especially for complex diseases like cancer [1]. It’s why we work hard on our exclusive BIOMIMESYS® technology. As experts in HCS and cell imaging, we must master all the process : 3D biological models, 3D cell culture, volumetric pictures acquisition, 3D reconstruction and segmentation of cells and ECM compounds, 3D parameters extraction and, of course, biological interpretations. As explained in our VisuAI R&D project, the 3D reconstruction and segmentation step is not simple.

Impact of neurodegenerative diseases on extracellular space organization and diffusion through hyaluronan remodeling

Soria et al. has published this year an interesting study about the modification leading by synucleopathy on the nanoscale organization and diffusivity of the extracellular space, through hyaluronan remodeling. Indeed the extracellular space (ECS), composed by the interstitial fluid and the extracellular matrix (ECM), plays several roles in health and Read more…

3D co-culture of dopaminergic neurons and astrocytes in BIOMIMESYS® Brain to study Parkinson’s disease

Parkinson’s disease affects more than 6 million people worldwide. This neurodegenerative disease is characterized by the death of dopaminergic neurons in the substantia nigra pars compacta, with intracellular accumulation of alpha-synuclein aggregates known as Lewi bodies. This neuronal loss leads to a decrease in the neurotransmitter dopamine that cause mainly Read more…

Biomimesys meets Stem cells: presentations at FSSCR event and “From 3D Culture to Organoid” symposium

Biomimesys is providing a great opportunity to culture human induced pluripotent stem cells (hiPSCs) in 3D and differentiate them into different kind of cell types including liver cells. Showcased by Méryl Roudaut at the 20th International Congress on In Vitro Toxicology (ESTIV2018), our co-development with the institute du thorax (U1087) Read more…

Poster – Urine sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia

Human induced pluripotent stem cells (hiPSC) are becoming a relevant model for the study of liver metabolic diseases once differentiated into hepatocyte-like cells (HLC), and it has been shown that they can faithfully recapitulate autosomal dominant hypercholesterolemia (ADH). PCSK9 is a critical modulator of cholesterol homeostasis, and quickly became a Read more…