Applications for 3D in vitro models with BIOMIMESYS® Adipose Tissue and preview of BIOMIMESYS® Skin

3D cell culture systems have recently emerged as promising tools for reproducing the cellular environment and the organization of tissues/organs, where cells are connected to each other and to the surrounding extracellular matrix (ECM). In this webinar we will focus on BIOMIMESYS® Adipose Tissue and on the ongoing development of Read more…

Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D

Abstract The extracellular polysaccharide hyaluronan (HA) controls cell migration, differentiation and proliferation, and contributes to the invasiveness of human cancers. The roles of HA cell surface receptors and hyaluronidases (HAses) in this process are still controversial. In order to investigate their involvement in cancer pathogenesis, we developed a reticulated HA Read more…

Cell-derived extracellular vesicles can be used as a biomarker reservoir for glioblastoma tumor subtyping

A publication from R. Lane et al, described the use of Small extracellular vesicles (sEVs) reservoir as a biomarker for Glioblastoma tumor subtyping. In this publication Astrocytes, Glioblastoma cell lines, and Glioblastoma patient-derived stem cells were grown in BIOMIMESYS® hydroscaffold. Abstract Glioblastoma (GBM) is one of the most aggressive solid tumors for which treatment options Read more…

A chemotaxis-based explanation of spheroid formation in 3D cultures of breast cancer cells

New results of growing of breast cancer (MCF7 and MCF7-sh-wisp2) cells in BIOMIMESYS® Adipose tissue as a relevant 3D in vitro model, using Keller–Segel PDE system to model chemotactical auto-organization of cells. Abstract Three-dimensional cultures of cells are gaining popularity as an in vitro improvement over 2D Petri dishes. In many such experiments, Read more…

Simplifying 3d cell culture generation for high content screening with BIOMIMESYS® and the Viaflo 96-384 (with Integra Biosciences)

Growing interest in phenotypic screening, together with evidence that the drug response of cells grown in three-dimensional (3D) structures more closely resembles in vivo activity, has made high throughput, 3D fluorescence imaging an attractive screening option for drug discovery. However, creating 3D spheroids compatible with high content screening can be Read more…

ABCA1/ABCB1 Ratio Determines Chemo- and Immune-Sensitivity in Human Osteosarcoma

Abstract The ATP Binding Cassette transporter B1 (ABCB1) induces chemoresistance in osteosarcoma, because it effluxes doxorubicin, reducing the intracellular accumulation, toxicity, and immunogenic cell death induced by the drug. The ATP Binding Cassette transporter A1 (ABCA1) effluxes isopentenyl pyrophosphate (IPP), a strong activator of anti-tumor Vγ9Vδ2 T-cells. Recruiting this population Read more…