Collaboration between “Institut du thorax” and HCS Pharma: improving the management of hypercholesterolemia using a relevant and innovative organoid-based in vitro liver model

Launched in 2016, the adventure is coming to an end after 5 years of work carried out within the RHU CHOPIN (CHOlesterol Personalized INnovation), and with a strong collaboration between HCS Pharma and l’Institut du thorax. This collaborative project of national scope was led by Professor Bertrand Cariou, director of Read more…

Poster – Development and automation of 3D innovative hiPSC-based liver organoids including the microenvironment for phenotypic screening – Application on metabolic diseases – version DHU2020

Ask for high quality link by putting your email below We previously showed that human pluripotent stem cells (hiPSCs) provide a suitable model to study metabolic diseases upon hepatocyte-like cell (HLC) differentiation. In particular, HLCs have been used to model cholesterol metabolism regulation, by mimicking the main disease features in Read more…

Poster – Development and automation of 3D innovative hiPSC-based liver organoids including the microenvironment for phenotypic screening – Application on metabolic diseases

We previously showed that human pluripotent stem cells (hiPSCs) provide a suitable model to study metabolic diseases upon hepatocyte-like cell (HLC) differentiation. In particular, HLCs have been used to model cholesterol metabolism regulation, by mimicking the main disease features in vitro. Human iPSCs can be generated from urine samples of Read more…

Poster – Urine sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia

Human induced pluripotent stem cells (hiPSC) are becoming a relevant model for the study of liver metabolic diseases once differentiated into hepatocyte-like cells (HLC), and it has been shown that they can faithfully recapitulate autosomal dominant hypercholesterolemia (ADH). PCSK9 is a critical modulator of cholesterol homeostasis, and quickly became a Read more…