Poster – Including the matricial tumoral microenvironment in 3D in vitro models by using a Hyaluronic-Acid-based hydroscaffold™

Abstract: In oncology, 97% of drug candidates fail in clinical trials. This highlights a lack of relevance of preclinical models used upstream. Indeed, human in vitro models don’t consider the Tumoral Extracellular Matrix (TECM). However, more and more studies demonstrate that ECM composition and stiffness are modified in tumors and Read more…

Meet us in OncoLille Days 2022 where we present a poster about matricial tumoral microenvironment in 3D in vitro models

We are pleased to participate in the first OncoLille Days congress from November 2th to 4th, 2022. Inaugurated on October 12th, 2022, OncoLille Institute aims at developing an interdisciplinary research in oncology, including biology, physics, microtechnologies, chemistry, mathematics, bioinformatics, statisitcs, health technologies and social and human sciences. HCS Pharma collaborates Read more…

Extracellular matrix modifications are involved in cancer initiation, progression and propagation

The extracellular matrix (ECM) is the non-cellular component of tissue. Its is mainly composed of structural and adhesion molecules, such as hyaluronic acid, collagene, proteoglycans, fibronectin, elastin, although its specific composition and structure vary between different tissues. It is a dynamic structure, which is involved not only in the cell Read more…

Importance of the liver extracellular matrix in the development of NASH/ASH

The extracellular matrix (ECM) is a non-cellular component of tissues and organs. It is mainly composed of structural elements (proteoglycans collagens, elastin) and cell adhesion proteins such as fibronectin and laminins. The ECM forms a complex structure with physical properties (elasticity, tensile and compression strength), which provides physical support for Read more…

Artificial intelligence to improve 3D cell culture : a milestone for HCS pharma

As you may now, in HCS Pharma we strongly believe that the critical point of the human health evolution in next years is the in vitro 3D cell culture, especially for complex diseases like cancer [1]. It’s why we work hard on our exclusive BIOMIMESYS® technology. As experts in HCS and cell imaging, we must master all the process : 3D biological models, 3D cell culture, volumetric pictures acquisition, 3D reconstruction and segmentation of cells and ECM compounds, 3D parameters extraction and, of course, biological interpretations. As explained in our VisuAI R&D project, the 3D reconstruction and segmentation step is not simple.