Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D

Abstract The extracellular polysaccharide hyaluronan (HA) controls cell migration, differentiation and proliferation, and contributes to the invasiveness of human cancers. The roles of HA cell surface receptors and hyaluronidases (HAses) in this process are still controversial. In order to investigate their involvement in cancer pathogenesis, we developed a reticulated HA Read more…

A chemotaxis-based explanation of spheroid formation in 3D cultures of breast cancer cells

New results of growing of breast cancer (MCF7 and MCF7-sh-wisp2) cells in BIOMIMESYS® Adipose tissue as a relevant 3D in vitro model, using Keller–Segel PDE system to model chemotactical auto-organization of cells. Abstract Three-dimensional cultures of cells are gaining popularity as an in vitro improvement over 2D Petri dishes. In many such experiments, Read more…

Mechanical stress on cells observed in cancerous tumor can be reproduced with BIOMIMESYS® hydroscaffold

It is now well described that in tumor biopsies, the stiffness of the cancerous tissue is higher than the surrounding non-cancerous tissue of the same organ, with a described remodeling of the ECM. The increase in rigidity is related to the stimulation of fibroblasts that increase the synthesis of glycosaminoglycans, Read more…